S'abonner

Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation - 20/03/24

Doi : 10.1016/j.rmr.2024.01.084 
M. Yehya 1, H. Dridi 2, R. Barsotti 3, Y. Liu 2, S. Reiken 2, L. Azria 1, Q. Yuan 2, L. Bahlouli 2, R. Soni 4, A. Marks 2, A. Lacampagne 1, S. Matecki 1,
1 PhyMedExp, University of Montpellier, CNRS, Inserm, CHRU de Montpellier, Montpellier, France 
2 Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA 
3 Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA 
4 Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY 

Corresponding author.

Résumé

In critical care patients, acute diaphragm inactivity due to mechanical ventilation (MV) initiates a process of diaphragmatic dysfunction and atrophy referred to as ventilator-induced diaphragm dysfunction (VIDD). Although mitochondrial dysfunction linked to oxidative stress plays a critical role in VIDD, the precise molecular mechanism remains poorly understood. Herein, we show, that six hours of MV resulted in a mitochondrial fission process with reduction of mitochondria size and interaction associated with increase dynamin related protein 1 (DRP1) expression; this was prevented by P110, a molecule that blocks the recruitment of DRP1 to the mitochondrial membrane. Moreover, isolated mitochondria from MV diaphragms exhibited decreased oxygen consumption and an increase of ROS production. These mitochondrial alterations were associated with a rapid oxidation of type 1 ryanodine receptor (RyR1) as well as a depletion of the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) from the MV diaphragms was leaky to Ca2+ and was associated with reduced diaphragmatic contractile function. All of these changes were prevented by the mitochondrial fission inhibitor molecule P110. Taken together, the results from our study show that MV induces mitochondrial fragmentation and dysfunction in the diaphragm that is associated with an up/down regulation of 320 proteins evaluated by global quantitative proteomics analysis, mainly related to mitochondrial function. These results emphasize the importance of molecules targeting mitochondrial fission/fusion balance to prevent VIDD in humans (Fig. 1).

Le texte complet de cet article est disponible en PDF.

Plan


© 2024  Publié par Elsevier Masson SAS.
Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 41 - N° 3

P. 223-224 - mars 2024 Retour au numéro
Article précédent Article précédent
  • Chronic intermittent hypoxia leads to disruption of clock genes expression in mouse lung tissues: Potential consequences on lung cell senescence
  • V. Gros, E. Marcos, J. Jacquet, E. Born, J. de Freitas, D. Beaulieu, N. Vienney, A. Houssaini, L. Lipskaia, C. Jourdan Le Saux, B. Pourcet, H. Duez, L. Boyer, S. Adnot
| Article suivant Article suivant
  • Noenatal obstructive sleep apneas in a mouse model of Down syndrome
  • M. Moreau, A. Madani, R. Dard, T. Bourgeois, M.P. D’Ortho, P. Bokov, N. Janel, B. Matrot

Déjà abonné à cette revue ?