Suscribirse

Bronchial epithelium energetic metabolism and functionality under exacerbation in childhood asthma - 08/04/25

Doi : 10.1016/j.rmr.2025.02.042 
E. Celle 1, 2, , F. Beaufils 1, 2, G. Cardouat 1, 2, M. Campagnac 1, 2, O. Ousova 1, 2, J-W. Dupuy 1, 2, T. Leste-Lasserre 1, 2, R. Marthan 1, 2, 3, P-O. Girodet 1, 2, 3, T. Trian 1, 2, P. Berger 1, 2, 3, P. Esteves 1, 2
1 Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000 Bordeaux, France 
2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Plateforme Transcriptome NeuroCentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, F-33000 Bordeaux, France 
3 CHU de Bordeaux, Service d’Exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie Thoracique, F-33604 Pessac, France 

Auteur correspondant.

Resumen

Introduction

Asthma is the most frequent chronic inflammatory disease in children. The main cause of asthma exacerbations is the viral infection of the bronchial epithelium (BE). Rhinoviruses (RV) are detected in 85 % of asthma exacerbations in children knowing that the prevalence of RVC represents 67.5 % in children and associated with severe exacerbations. In adults, it has been shown that BE energetic metabolism shifts from mitochondrial oxidative phosphorylation towards glycolysis compared to healthy BE [1]. In healthy BE, viral infection of BE promotes a metabolic rewiring in favor for glucose utilization through glycolysis rather than mitochondrial metabolism, impacting the muco-ciliary clearance [2]. We suppose that RV infection enhances BE glycolytic metabolism affecting the BE function in childhood asthma. We will analyse both the energetic metabolism and the functions of BE under RV infections on childhood non-asthma and asthma BE.

Methods

Cell culture.

BE cells were obtained from children bronchi fibroscopic brushing. 100 000 cells were seeded on ALI transwell (0.4μm pores, Corning Incorporated Transwell, Costar) with ALI medium (StemCell) at basal pole.

RV infection.

We infected BE with RVC MOI 0.1. The mix was removed 1h after and the experiences were realized 24h after infection.

Cellular oxygen consumption rate (OCR).

OCR was measured on intact cells at 37°C in a 2mL thermostatically monitored chamber (2.5×105 cells/mL/run) using an Oroboros O2k instrument (Oroboros Instruments).

Ciliary beating frequency.

Ciliary beating frequency of BE were measured using videomicroscopy Leica DMi8 (Leica Microsystems) coupled to a high-speed camera sCMOS Flash 4.0 camera (Hamamatsu) available at The Bordeaux Imaging Center. Using MATHLAB program, the images were analyzed after application of the Fourier transform to determine the most represented beat frequency.

Results

Under basal condition, asthmatic children BE were metabolically different from non-asthmatic children BE. Proteomic analysis, OCR and glycolytic enzymes expression indicated that asthmatic BE were using more glucose through glycolysis rather that mitochondrial metabolism. RV infection aggravate the shift within non-asthmatic BE. In association, we observed a defective ciliary beating frequency and efficiency in asthmatic children BE compared to non-asthmatic children BE.

Conclusion

Our study revealed that non-asthmatic and asthmatic children BE appeared metabolically different, in basal conditions but also after RV infection. BE barrier functions seemed less efficient in asthmatic children BE compared to non-asthmatic BE. To go further, we will deepen how RV infection can modulate energetics and how it will affect BE functions.

El texto completo de este artículo está disponible en PDF.

Esquema


© 2025  Publicado por Elsevier Masson SAS.
Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 42 - N° 4

P. 202-203 - avril 2025 Regresar al número
Artículo precedente Artículo precedente
  • Application de la microscopie à force atomique dans l’analyse fonctionnelle des éosinophiles
  • V. Spasovski, A. Ecrement, T. Gasser, C. Elie-Caille, G. Rolin, C. Barnig
| Artículo siguiente Artículo siguiente
  • Air pollution exposure, respiratory consequences, and perceptions among urban African children living in poorly condition–a case study in Abidjan, Côte d’Ivoire
  • A. Pajot, M. Yapo, S. Coulibaly, M. Doumbia, S. Gnamien, K. Kouao, S. Ahoua, S. Dje, C. Liousse, R. Moh, J. Orne-Gliemann, F. Dick Amon Tanoh, V. Yoboue, O. Marcy

¿Ya suscrito a @@106933@@ revista ?